The expression of GAL-3 and CK-19 in Hashimoto’s thyroiditis compared to Papillary thyroid carcinoma

Authors

  • Murtadha A. Mehdi Department Medical Microbiology and Immunology, College of Medicine, University of Karbala, Karbala, Iraq
  • Ali M. Jasim Department Medical Microbiology and Immunology, College of Medicine, University of Karbala, Karbala, Iraq
  • Mohammed F. Al-Ganber Department Pathology, College of Medicine, University of Karbala, Karbala, Iraq

Keywords:

Hashimoto’s thyroiditis, Papillary thyroid carcinoma, Cytokeratin-19, Galectin-3

Abstract

Objective: investigate the hypothesis of that Hashimoto’s thyroiditis (HT) consider risk factor to development Papillary thyroid carcinoma (PTC) and to the compared expression of GAL-3 and CK-19 between groups of diseases that involve in this study.

Methods: 27 Paraffin-embedded tissue of HT submitted to examination by monoclonal antibody to CK-19 and GAL-3 by immunohistochemical test and compared with 24 cases of papillary thyroid carcinoma, 7 PTC with HT and 23 nodular goiters as a control.

Results: high positive expression of both markers in HT and there are non-significant differentiation between HT and PTC when (p > 0.05).

Conclusion: this study concludes that there is etiological relationship between HT and development PTC and GAL-3 may have a role in the cellular transformation to a cancerous cell with PTC feature when continuous overexpression.

References

(1) American Thyroid Association. Hashimoto’s Thyroiditis 2016 [updated 2016. Available from: https://www.thyroid.org/wp-content/uploads/patients/brochures/Hashimoto_Thyroiditis.pdf.
(2) Caturegli P, De Remigis A, Rose N. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmunity reviews. 2014;13(4-5):391-7.
(3) Hollowell J, Staehling N, Flanders W, Hannon W, Gunter E, Spencer C. Serum TSH, T 4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III) J Clin Endocrinol Metab 87: 489–499. Find this article online. 2002.
(4) Kumar V, Abbas AK, Aster JC, editors. Robbins Basic Pathology E-Book. Ninth 9th ed: Elsevier Health Sciences; 2013.
(5) Ieni A, Vita R, Magliolo E, Santarpia M, Di Bari F, Benvenga S, et al. One-third of an Archivial Series of Papillary Thyroid Cancer (Years 2007–2015) Has Coexistent Chronic Lymphocytic Thyroiditis, Which Is Associated with a More Favorable Tumor-Node-Metastasis Staging. Frontiers in endocrinology. 2017;8.
(6) Caturegli P, De Remigis A, Chuang K, Dembele M, Iwama A, Iwama S. Hashimoto's Thyroiditis: Celebrating the Centennial Through the Lens of the Johns Hopkins Hospital Surgical Pathology Records. Thyroid. 2013;23(2):142-50.
(7) LiVOLSI VA. The pathology of autoimmune thyroid disease: a review. Thyroid. 1994;4(3):333-9.
(8) Chiovato L, Bassi P, Santini F, Mammoli C, Lapi P, Carayon P, et al. Antibodies producing complement-mediated thyroid cytotoxicity in patients with atrophic or goitrous autoimmune thyroiditis. The Journal of Clinical Endocrinology & Metabolism. 1993;77(6):1700-5.
(9) Pyzik A, Grywalska E, Matyjaszek-Matuszek B, Roliński J. Immune disorders in Hashimoto’s thyroiditis: what do we know so far? Journal of immunology research. 2015;2015.
(10) Xue H, Yu X, Ma L, Song S, Li Y, Zhang L, et al. The possible role of CD4+CD25highFoxp3+/CD4+IL-17A+ cell imbalance in the autoimmunity of patients with Hashimoto thyroiditis. Springer Science+Business Media New York 2015. 2015.
(11) Ganesh BB, Bhattacharya P, Gopisetty A, Prabhakar BS. Role of cytokines in the pathogenesis and suppression of thyroid autoimmunity. Journal of Interferon & Cytokine Research. 2011;31(10):721-31.
(12) LiVolsi VA. Papillary thyroid carcinoma: an update. Modern Pathology. 2011;24(S2):S1.
(13) Malinova D, Tzaneva M. ANGIOGENESIS AND CK19 EXPRESSION IN PAPILLARY THYROID CARCINOMA. Trakia Journal of Sciences. 2015;13(2):147-50.
(14) Xin Y, Guan D, Meng K, Lv Z, Chen B. Diagnostic accuracy of CK-19, Galectin-3 and HBME-1 on papillary thyroid carcinoma: a meta-analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY. 2017;10(8):8130-40.
(15) Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: a cancer journal for clinicians. 2011;61(2):69-90.
(16) Avgoustou C, Avgoustou E. Coexistence of Hashimoto’s thyroiditis and papillary thyroid carcinoma. Hellenic Journal of Surgery. 2017;89(2):73-8.
(17) Lloyd RV, Buehler D, Khanafshar E. Papillary thyroid carcinoma variants. Head and neck pathology. 2011;5(1):51-6.
(18) Zhang X, Su X, Chen W, Li Y, Yang Z, Deng W, et al. RET/PTC rearrangement affects multifocal formation of papillary thyroid carcinoma. Zhonghua er bi yan hou tou jing wai ke za zhi= Chinese journal of otorhinolaryngology head and neck surgery. 2017;52(6):435-9.
(19) Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. Journal of clinical oncology. 2015;33(1):42.
(20) Howell GM, Hodak SP, Yip L. RAS mutations in thyroid cancer. The oncologist. 2013;18(8):926-32.
(21) Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nature Reviews Cancer. 2006;6(4):292.
(22) MacCorkle RA, Tan T-H. Mitogen-activated protein kinases in cell-cycle control. Cell biochemistry and biophysics. 2005;43(3):451-61.
(23) Argüeso P, Panjwani N. Focus on molecules: galectin-3. Experimental eye research. 2011;92(1):2.
(24) Díaz-Alvarez L, Ortega E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators of inflammation. 2017;2017.
(25) Sanuvada R, Nandyala R, Chowhan AK, Bobbidi P, Yootla M, Hulikal N, et al. Value of cytokeratin-19, Hector Battifora mesothelial-1 and galectin-3 immunostaining in the diagnosis of thyroid neoplasms. Journal of Laboratory Physicians. 2018;10(2):200.
(26) Arcolia V, Journe F, Renaud F, Leteurtre E, Gabius HJ, Remmelink M, et al. Combination of galectin-3, CK19 and HBME-1 immunostaining improves the diagnosis of thyroid cancer. Oncology letters. 2017;14(4):4183-9.
(27) Tang K-T, Lee C-H. BRAF mutation in papillary thyroid carcinoma: pathogenic role and clinical implications. Journal of the Chinese Medical Association. 2010;73(3):113-28.
(28) DeLellis RA, Shin SJ, Treaba DO. Immunohistology of endocrine tumors. Diagnostic Immunohistochemistry (Third Edition): Elsevier; 2010. p. 291-339.
(29) Brotherick I, Robson C, Browell D, Shenfine J, White M, Cunliffe W, et al. Cytokeratin expression in breast cancer: phenotypic changes associated with disease progression. Cytometry: The Journal of the International Society for Analytical Cytology. 1998;32(4):301-8.
(30) Park MI, Kang DY. Usefulness of galectin-3, cytokeratin 19, p53, and Ki-67 for the differential diagnosis of thyroid tumors. Korean J Pathol. 2006;40(2):86-92.
(31) Prasad ML, Pellegata NS, Huang Y, Nagaraja HN, de la Chapelle A, Kloos RT. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Modern Pathology. 2005;18(1):48.
(32) Abouhashem NS, Talaat SM. Diagnostic utility of CK19 and CD56 in the differentiation of thyroid papillary carcinoma from its mimics. Pathology-Research and Practice. 2017;213(5):509-17.
(33) Hasan IA, Najem MM, Kadem TJ. Evaluation of Immunohistochemical Expression of CK19 in Papillary Thyroid Carcinoma and Grave's Disease with Papillary Changes. Iraqi Journal of Medical Sciences. 2013;11(3).
(34) Song Q, Wang D, Lou Y, Li C, Fang C, He X, et al. Diagnostic significance of CK19, TG, Ki67 and galectin-3 expression for papillary thyroid carcinoma in the northeastern region of China. Diagnostic pathology. 2011;6(1):126.
(35) Guhanandam H, Rajamani R, Noorunnisa N, Durairaj M. Expression of cytokeratin-19 and thyroperoxidase in relation to morphological features in non-neoplastic and neoplastic lesions of thyroid. Journal of clinical and diagnostic research: JCDR. 2016;10(6):EC01.
(36) Wu G, Wang J, Zhou Z, Li T, Tang F. Combined staining for immunohistochemical markers in the diagnosis of papillary thyroid carcinoma: improvement in the sensitivity or specificity? Journal of International Medical Research. 2013;41(4):975-83.
(37) Zhang K, Ge SJ, Lin XY, Lv BB, Cao ZX, Li JM, et al. Intercellular adhesion molecule 1 is a sensitive and diagnostically useful immunohistochemical marker of papillary thyroid cancer (PTC) and of PTC‑like nuclear alterations in Hashimoto's thyroiditis. Oncology letters. 2016;11(3):1722-30.
(38) Gupta R, Khosroshahi A, Shinagare S, Fernandez C, Ferrone C, Lauwers GY, et al. Does autoimmune pancreatitis increase the risk of pancreatic carcinoma?: a retrospective analysis of pancreatic resections. Pancreas. 2013;42(3):506-10.
(39) Rasmussen CB, Kjaer SK, Albieri V, Bandera EV, Doherty JA, Høgdall E, et al. Pelvic inflammatory disease and the risk of ovarian cancer and borderline ovarian tumors: a pooled analysis of 13 case-control studies. American journal of epidemiology. 2017;185(1):8-20.
(40) Jess T, Rungoe C, Peyrin–Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clinical Gastroenterology and Hepatology. 2012;10(6):639-45.
(41) Toiyama Y, Okugawa Y, Tanaka K, Araki T, Uchida K, Hishida A, et al. A panel of methylated microRNA biomarkers for identifying high-risk patients with ulcerative colitis-associated colorectal cancer. Gastroenterology. 2017;153(6):1634-46. e8.
(42) Ma H, Yan J, Zhang C, Qin S, Qin L, Liu L, et al. Expression of papillary thyroid carcinoma-associated molecular markers and their significance in follicular epithelial dysplasia with papillary thyroid carcinoma-like nuclear alterations in Hashimoto’s thyroiditis. International journal of clinical and experimental pathology. 2014;7(11):7999.
(43) Chui MH, Cassol CA, Asa SL, Mete O. Follicular epithelial dysplasia of the thyroid: morphological and immunohistochemical characterization of a putative preneoplastic lesion to papillary thyroid carcinoma in chronic lymphocytic thyroiditis. Virchows Archiv. 2013;462(5):557-63.
(44) Nasr MR, Mukhopadhyay S, Zhang S, Katzenstein A-LA. Absence of the BRAF mutation in HBME1+ and CK19+ atypical cell clusters in Hashimoto thyroiditis: supportive evidence against preneoplastic change. American journal of clinical pathology. 2009;132(6):906-12.
(45) Huang L, Wang X, Huang X, Gui H, Li Y, Chen Q, et al. Diagnostic significance of CK19, galectin-3, CD56, TPO and Ki67 expression and BRAF mutation in papillary thyroid carcinoma. Oncology letters. 2018;15(4):4269-77.
(46) Kang D-Y, Kim K-H, Kim J-M, Kim S-H, Kim J-Y, Baik H-W, et al. High prevalence of RET, RAS, and ERK expression in Hashimoto's thyroiditis and in papillary thyroid carcinoma in the Korean population. Thyroid. 2007;17(11):1031-7.
(47) Azizi G, Keller J, Lewis M, Piper K, Puett D, Rivenbark KM, et al. Association of Hashimoto's thyroiditis with thyroid cancer. Endocrine-related cancer. 2014;21(6):845-52.
(48) Yoshii T, Inohara H, Takenaka Y, Honjo Y, Akahani S, Nomura T, et al. Galectin-3 maintains the transformed phenotype of thyroid papillary carcinoma cells. International journal of oncology. 2001;18(4):787-92.
(49) Takenaka Y, Inohara H, Yoshii T, Oshima K, Nakahara S, Akahani S, et al. Malignant transformation of thyroid follicular cells by galectin-3. Cancer letters. 2003;195(1):111-9.
(50) Song S, Ji B, Ramachandran V, Wang H, Hafley M, Logsdon C, et al. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling. PloS one. 2012;7(8):e42699.

Downloads

Published

2018-12-26

How to Cite

1.
Mehdi MA, Jasim AM, Al-Ganber MF. The expression of GAL-3 and CK-19 in Hashimoto’s thyroiditis compared to Papillary thyroid carcinoma. Iraq Med J [Internet]. 2018 Dec. 26 [cited 2025 Jan. 8];2(4). Available from: https://iraqmedj.org/index.php/imj/article/view/528

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.